Skip to contents

The main function for fitting multivariate bcf

Usage

run_mvbcf(
  X_con,
  y,
  Z,
  X_mod,
  X_con_test = X_con,
  X_mod_test = X_mod,
  alpha = 0.95,
  beta = 2,
  alpha_tau = 0.25,
  beta_tau = 3,
  sigma_mu = diag((1)^2/n_tree, ncol(y)),
  sigma_tau = diag((1)^2/n_tree_tau, ncol(y)),
  v_0 = ncol(y) + 2,
  sigma_0 = diag(1, ncol(y)),
  n_iter = 1000,
  n_tree = 50,
  n_tree_tau = 20,
  min_nodesize = 1
)

Arguments

X_con

The control variables used in the mu trees

y

The outcome variable/s

Z

The treatment indicator

X_mod

The effect moderators used in the tau trees

X_con_test

The control variables used in the mu trees (test data)

X_mod_test

The effect moderators used in the tau trees (test data)

alpha

The alpha parameter in the tree prior for mu trees

beta

The beta parameter in the tree prior for mu trees

alpha_tau

The alpha parameter in the tree prior for tau trees

beta_tau

The beta parameter in the tree prior for tau trees

sigma_mu

The prior for the terminal node parameters of mu trees

sigma_tau

The prior for the terminal node parameter of tau trees

v_0

Prior degrees of freedom for inverse-wishart distribution

sigma_0

The scale matrix in the prior for inverse-wishart distribution

n_iter

The number of MCMC iterations

n_tree

The number of mu trees

n_tree_tau

The number of tau trees

min_nodesize

Moves resulting in nodes with fewer observations than this are rejected

Value

A list of model outputs